首页> 外文OA文献 >Machine learning for identifying demand patterns of home energy management systems with dynamic electricity pricing
【2h】

Machine learning for identifying demand patterns of home energy management systems with dynamic electricity pricing

机译:机器学习以动态电价确定家用能源管理系统的需求模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

textabstractEnergy management plays a crucial role in providing necessary system flexibility to deal with the ongoing integration of volatile and intermittent energy sources. Demand Response (DR) programs enhance demand flexibility by communicating energy market price volatility to the end-consumer. In such environments, home energy management systems assist the use of flexible end-appliances, based upon the individual consumer's personal preferences and beliefs. However, with the latter heterogeneously distributed, not all dynamic pricing schemes are equally adequate for the individual needs of households. We conduct one of the first large scale natural experiments, with multiple dynamic pricing schemes for end consumers, allowing us to analyze different demand behavior in relation with household attributes. We apply a spectral relaxation clustering approach to show distinct groups of households within the two most used dynamic pricing schemes: Time-Of-Use and Real-Time Pricing. The results indicate that a more effective design of smart home energy management systems can lead to a better fit between customer and electricity tariff in order to reduce costs, enhance predictability and stability of load and allow for more optimal use of demand flexibility by such systems.
机译:textabstract能源管理在提供必要的系统灵活性以应对挥发性和间歇性能源的持续集成中发挥着至关重要的作用。需求响应(DR)计划通过向最终用户传达能源市场价格波动来增强需求灵活性。在这样的环境中,家庭能源管理系统会根据个人消费者的个人喜好和信念,协助使用灵活的终端设备。但是,由于后者是异构分布的,因此并非所有动态定价方案都足以满足家庭的个人需求。我们进行了首批大规模自然实验之一,为最终消费者提供了多种动态定价方案,使我们能够分析与家庭属性有关的不同需求行为。我们使用频谱松弛聚类方法来显示两种最常用的动态定价方案中的不同家庭组:使用时间定价和实时定价。结果表明,智能家居能源管理系统的更有效设计可以使客户和电价更好地契合,以降低成本,增强负载的可预测性和稳定性,并允许此类系统更优化地利用需求灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号